
�

A Novel Scalable Architecture of Cloud Storage System for Small Files based on
P2P

�

ZHANG Qi-fei, PAN Xue-zeng, SHEN Yan

College of Computer Science and Technology,
Zhejiang University,

Hangzhou 310027, China;
zhangfeezju@gmail.com

LI Wen-juan,
College of Qianjiang,

Hangzhou Normal University
Hangzhou, 310036, China

liellie@163.com

Abstract—Scalability and Latency are the two important

performance indicators for the distributed file system, and

Google and Apache have achieved a great success with GFS

and HDFS when operating big files, but the latency is too

long when reading and writing small-size files, because the

concurrent I/O can’t work for small files, besides the master

node is difficult to extend in the cloud storage system with

Master/Slave structure. In this paper, we propose a

distributed cloud storage system based on P2P, where a

central route node is introduced to improve the resource

query efficiency, so clients can find data using only one

message compared with Chord’s log(N). The central routing

node only stores the status and routing information of all

data nodes, which are indexed by the Trie Tree structure, so

query time meets the requirement of online query. The data

nodes store file’s content and file’s metadata thus the system

is easy to extend because the master node no longer needs to

store the metadata. Clients can also cache the routing

information, so the read and write time is reduced according

to the Locality Principle. Experiments show that the reading

and writing time is significantly reduced compared with

Hadoop HDFS.

Keywords-P2P; the Small File; DHT; Chord Routing

Algorithm; Cloud Storage System; Trie Tree

I INTRODUCTION

With the development of computational science, the
large-scale parallel computers and large-scale parallel
storage system are also renewed to meet the computing and
storage requirements of various business systems. The
development of parallel storage system is increasingly
specialized to take as much utilization of underlying
hardware as possible. Currently, the parallel storage system

with a Master/Slaver structure has great advantage in
reading and writing large-size files and the performance
advantage is particularly evident when dealing with
G-level even T-level files, such as Google’s GFS(Google
File System) [11] and Apache’s Hadoop HDFS (Hadoop
Distributed File System) [13]. But the concurrent I/O can’t
work for small-size files. According to a report from the
US National Energy Research Scientific Computing Center
in 2007, 99 percent files are smaller than 64MB and 43
percent files are smaller than 64 KB [1] in a file system
with 1.3×107 files. Researchers of US Pacific Northwest
National Laboratory have also come to the similar
conclusion that 94 percent files are smaller than 64MB and
58 percent files are smaller than 64 KB [2] in a file system
with 1.2×107 files. The conclusion is also confirmed by the
data from climate, astronomy, biology and other fields, and
the average size is 61 MB [3] of the 4.5×105 files from
global atmospheric circulation patterns and the average
size is 1 MB [4] of the 2×107 files from astronomical
image and the average size is 190 KB [5] of the 3×107
files from human genome sequence map. So researchers
begin to focus on the performance improvement for the
small-size file in the distribute environment, and Shaikh
[6] et al. presented an implementation of file stuffing on
metadata server. The problem is that stuffing increases
space pressure of the metadata server when more and more
small files are stuffed. Carns [7] et al. implemented the
similar stuffing method in PVFS2, and compared with the
method in [6], the method in [7] only worked when the
metadata server acted as data server at the same time,
besides, only files that smaller than stripe size can benefit
from their optimization. Hendricks [8] et al. studied the
overhead due to the decoupling of clients and servers in

2012 IEEE International Conference on Cluster Computing Workshops

978-0-7695-4844-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ClusterW.2012.27

41

�

distributed file system. They presented metadata
pre-fetching method to mask the network roundtrip. Since
the metadata is very small, the optimization can bring
significant performance gains. Kuhn [9] et al. observed
that not all applications required complete metadata for
small file workloads. They implemented a special directory
hint, no metadata to label the directory which contains
small files. This method shows significant metadata
performance improvements for small files but the directory
restriction limits its applying scope to directory level.
Mackey [10] et al. proposed the metadata compress
method, which can improve the space utilization for
metadata, but the method doesn’t fundamentally solve the
problem and introduces additional overhead
simultaneously. The pre-fetching method can reduce the
time overhead of a round-trip, but the method will
introduce lots of extra time with the number of the small
files increasing.

Firstly, we present the current mainstream distributed
file system with Master/Slaver structure, and then we
analyze its performance bottleneck when dealing with
small files. After that, we propose a distribute file system
for small file based on P2P in this paper, and we introduce
the Trie data structure to store the routing information,
which meets the requirements of online query. Clients can
also cache the central routing information when the
number of small files is very large. Experiments show that
the performance of reading and writing small files is
significantly improved compared with Hadoop HDFS.

II DISTRIBUTE STORAGE SYSTEM

A. Distribute Storage System with Master/Slaver
structure

Currently, the cloud storage system mainly used the
Master/Slaver structure, such as Google’s GFS, Yahoo’s
HDFS and Amazon’s S3 (Simple Storage Service) [12].
The typical structure is shown as Fig.2.1. The master
server maintains directory structure, metadata and the
mapping between the file name and block ID, and data
blocks are stored on slaver servers. Clients can read and
write the data block in parallel for large-size files after
obtaining Slavers’ IP and blocks’ ID in step 3 and step 4.
But the concurrent I/O could not work [15] for small files,

and when designing a file system for small file with same
capacity the master will become the bottleneck.

Figure 2.1 Google’s GFS file system architecture�

B. Distribute Storage System Based on P2P

In this paper we proposed a new distribute storage
system architecture for small files with a central routing
node, which is shown as Fig. 2.2.

Figure 2.2 Distributed file system based P2P

The center node maintains the routing and status
information of all data node, and the item is added or
updated when the data node sends a heartbeat packet to the
center node. By this way, the center node knows that the
data node is online, the other hand, the center node will
mark one node offline when the center node don’t receive
a heartbeat packet within a threshold time, and then the
center node will initiate backup process (There are 3 copies
for each file). All the data node form a ring, and the system
uses current mainstream distribute hash table DHT [16] to
distribute the files, which is also adopted by Amazon’s
Dynamo [14]. DHT enables that each node only needs to
process the data falls between the current node and its

42

�

precursor node, and the consistence of hash function
uniformly spreads data along the ring.

Currently, there are many routing algorithms based on
DHT, such as Chord[17], CAN, Kademlia[18] et al., but
Chord’s complexity is O(log(N)), Kademlia’s complexity
is O(k), where N is the number of all data nodes and k is
the number of the data set that is nearest to value key.
Chord is completely decentralized and symmetric, which is
different from our system. In our system we introduced a
central routing node. The center node stores all nodes’
routing and status information, which is showed as Tab.1
that clients can pre-fetch the routing information when the
number of the routing table item is not huge; and client can
also cache the routing information when the routing data is
very large. It’s shown as Fig.2.2 that clients can directly
read or write the data on the specific data node. But, the
Center Node will become the bottleneck of the system with
the number of small files increasing. There will be a few
problems as follow:

(1) The query time complexity is (log())O n when

the data set is orderly and the query time complexity is
O(n) when the data set is unordered, so it’s impossible to
handle the high concurrent request.

(2) Too much maintain cost. The time complexity is up
to ()O n for inserting and deleting nodes. The number of
failed nodes is proportional to the system scale, and the
maintenance cost greatly increases the system burden when
the system extends.

Table 1 Items of central routing node

Hash Value Status IP Address

12ABC23ADFKBCJKDFJAF On 10.2.1.2

72ABC23ADFKBCJKDFJAF Off 10.7.1.2

EFAER223ADFK12JKD78A On 10.9.9.2

III THE INDEX STRUCTURE OF CENTRAL
ROUTING NODE BASED ON TRIE TREE

In this paper, a new index structure based on Trie tree
is proposed to solve the problem that the query time is too
long and the system is difficult to extend. The Trie tree that
is known as word search tree or key tree is a tree structure,
which is a variant of hash tree, and it is usually used as

statistics in search engine system or sorting a large number
of strings. Trie is more efficient than Hash Table for Trie
tree has less character comparison.

Figure 3.1 The shape of Trie tree

Firstly, several symbols are defined in order to better
describe the performance of our system.

Definition 1: the number of all different characters in
hash value is m and the character set in the hash value

is denoted by 1{ ,... }mN N� � , where | |N m� and

symbol “||” denotes the length of the string. The symbol
n denotes the number of items in hash table.

Definition 2: the length of the hash value is l and

the string of the hash value is denoted by [1...]T T l� ,

where | |T l� .

Definition 3: the length of the search string is l and

the search string is denoted by [1...]P P l� , where

| |P l� .

A. Time�Complexity�

The Trie tree is built with the hash value shown in
Tab.1, and the hash value has a length of 20 Bytes and
status flag is one Byte, and IP address is 4 Bytes.

1) Time complexity of construction Trie tree
There is only one node called root node at initial in Trie

tree, and it begins to traverse from root node when
structuring a Trie tree in the memory, and a new node will
be added when the string is not in Trie tree. Average
children number of each node is / 2m , and average height

43

�

of Trie tree is / 2l , so the average number to compare for
a new string is less than (/ 2)*(/ 2)l m , so we can get
results as follow:

(1) The query time complexity is
(*(log)* / 2)O n m l when the all nodes’ children are

ordered.
(2) Time complexity is (*(/ 2)*(/ 2))O n m l

when the all nodes’ children are unordered.

2) Time complexity of querying
The substance is that using the Trie tree can reduce the

useless comparison. The search begins from root node and
only m-times comparisons is needed at most at each layer
because that there are m children at most to each node, so
the average comparison time is (/ 2)*(/ 2)m l for a

Trie tree with height of l . We can get results as follow:
(1)Time complexity is ((log)* / 2)O m l when the

all nodes’ children are ordered
(2)Time complexity is ((/ 2)*(/ 2))O m l when the

all nodes’ children are unordered.

3) Time complexity of adding
It’s similar to construct a Trie tree for adding a node,

and it begins from the root node and searches the node
having same prefix with pattern P. The IP address stored in
the matching node will be renewed if the pattern P matches
all the string along the nodes of the Trie tree, otherwise we
add a new node. We can get results as follow:

(1)Time complexity is (* / 2)O m l when the all
nodes’ children are ordered.

(2)Time complexity is (log()* / 2)O m l when the
all nodes’ children are unordered.

4) Time complexity of dealing failed node
It’s similar to construct a Trie tree for deleting a failed

node, and it begins from root node and searches the node
having same prefix with pattern P. The node will be
deleted if we find a leaf node, otherwise the pattern do not
exist in the Trie tree. More, the father node may merge
the remaining children after deleting the failed node. It’s
shown as Fig.3.2 that is the shape after deleting node 12.

The node in cloud computing environment could not
leave initiatively unless the node failed, and the node fail is
small probability event. Comparing with other P2P
scenarios, the probability for data nodes to quit or join the
system is very low, so it’s not often to delete or add nodes.

Figure 3.2 Trie tree's shape after deleting node 9

B. Space complexity for pre-fetching

Let l represents the height of the Trie tree, and let

iL represents the leaf number of layer- i and let iM

represents the non-leaf number of layer- i . Due

to | |T m� , so we can get formula (1).

1 2
i i

i
L LM
m �
� � � �� �� 	 � 	� 	 � 	

 (1)

Let M represents the total number of all non-leaf
nodes in the Trie tree, so we can get formula (4) according
to formula (2) and formula (3), at last we can easily

calculate that [/ , / 2]M n m l n l
 � � , so the space

complexity is ()O n .

1

0

l

i
i

M M
�

�

�� , (2)

1

l

i
i

L n
�

�� , (3)

1 1

0 0 2

l l
i i

i i

L LM
m

� �

� �

� � � �� �� 	 � 	� 	 � 	
� � , (4)

C. Scalability of Central Server

The query time complexity based on Trie tree is

()O m l , which meets the requirements of online query.

But the memory consumption of Trie tree exceeds the

44

�

physical limit of the central node when the system extends,
for instance, the number of small files is 1×108 and each
leaf takes up 30 Bytes, thus the total memory taken by Trie
tree is up to 3GB. So the center node will become the
bottleneck when system extends. In this paper we propose
a new scalable distributed architecture of the center server,
which is shown as Fig.3.3. The server on the top in the Fig.
3.3 is portal to clients, and the server A, B and C
respectively construct the Trie tree using the substrings
except the characters A, B and C. By this way, the space of
Trie tree is distributed to each server, and just one hop
routing time is added.

�

Figure 3.3 Topology after the system extended

D. Fault tolerance of central node

The system uses the double hot backup method, which
could ensure system sustainable work when the center
node failed. The backup machine will take over the failed
one immediately.

E. Cache mechanism of client’s routing information

Clients often read or write the same data many times in
a period of time according to the Locality Principle, so
clients can cache the routing information after obtaining
the routing information from the central node.

IV EXPERIMENTS

In experiments, there are 10 data nodes and a center
node, which is shown as Fig. 4.1. The Switch is D-Link’s
10/100/1000 adaptive switch. The data node runs on
Windows XP with Intel’s dual-core CPU 2.93 and 2GB
memory, and the IDE is .NET Framework 3.5 and Visual
Studio 2005. The software of node side is written in C#

language, and the software of central node side that runs on
Ubuntu with kernel 2.6.35 is written in C with compiler
gcc 4.4.5.

Figure 4.1 Network System topology diagram

A. Comparison of query time

It’s shown as Tab. 4.1 that the query time of array
structure proportionally increases with the number of small
files, but the query time of Trie structure increases little
when the number of small files increase from one hundred
thousand to one hundred million, the little increased time is
mainly because more intermediate nodes are needed to
compare. But the worst case is m-times comparisons to
each layer, and the time complexity is ()O m l , which is
independent on n and is a constant.

The query time above doesn’t include round-trip time
in the network, but it’s only the time of searching Trie tree.

Table.4.1 Query Time of both algorithms

The number of
small files

Query time of
Trie Ms

Query time of
array Ms

100000 0.014 1.05

1000000 0.016 10.3

10000000 0.018 111.2

100000000 0.022 807.1

B. Comparison of memory consumption

It’s shown as Tab.4.2 that the memory consumption of
two data structures increases with the number of small files,
and the memory consumption of Trie structure is 1.6 times
more than Array structures. The main reason is that the
Trie tree needs additional intermediate nodes and
additional pointers to maintain the tree.

45

�

Table.4.2 Memory Consumption of both algorithms

The number
of small files

Memory
consumption of
Trie Bytes

Memory
consumption of
Array Bytes

100000 3837408 2400000

1000000 40077184 24000000

10000000 398140736 240000000

100000000 17692305640 2400000000

C. Comparison with Hadoop HDFS

Hadoop is the most widely used open source
distributed file system, which is similar with Google’s
GFS. We compared the performance between ours system
and Hadoop HDFS. The relationship chart between the file
size and time consumption is shown as Fig.4.2 and Fig.4.3,
and the time overhead of reading small files with Hadoop
is far more than our system. It’s because that Hadoop is
designed for large-size file in parallel, so Hadoop doesn’t
take its advantage when reading and writing small-size file,
instead, more system overhead is added for parallel design.

Figure. 4.2 Time cost for reading files of 1K to 100 K comparing with

Hadoop

�

Figuer 4.3 Time cost for reading files of 10 K to 1000 K comparing with

Hadoop

V. CONCLUSION

With the rapid development of computational science,
all kinds of data including growing proportion small files
are generated, and it’s too costly for storing the small files
on the GFS or HDFS. In this paper we proposes a new
distributed storage system for small files based on P2P
after analyzing the distributed storage system with
Master/Slaver structure. We introduce a central routing
node to improve the efficiency of resource discovery, so
clients can find data using only one message compared
with Chord’s log(N). The central routing node stored the
status and routing information of all the nodes, which is
indexed by the Trie, and query time meets the
requirements of online query. The clients can pre-fetch the
routing information when the data is not very large, and the
clients can cache the information when the number of
small files is very large. The experiments show that the
performance of our system is significantly improved
compared with Hadoop HDFS when reading and writing
small files.

The system implemented the basic function of storage
system for small files based on DHT, and the system
reaches the requirement of online query. But the central
node is the bottleneck when the system extends, so our
next-stage works include the following contents:
(a)The node in cloud computing environment could not
leave until the node failed or the node was damaged by
natural disasters, which is small probability event. Our
next-stage work is to study the relationship between the
system performance and the probability the node failed.
(b)Implement the scalability based on the Trie structure.

46

�

REFERENCE

[1] Patascale Data Storage Institute, “NERSC file system statistics.”

[2007]. http://pdsi.nersc.gov/filesystem.htm.

[2] Felix. E., “Environmental Molecular Sciences Laboratory: Static

Survey of File System Statistics.” [2007].

http://www.pdsi-scidac.org/fsstats/index.html.

[3] Chervenak A., Schopf J. M., Pearlman L., et al. “Monitoring the

Earth System Grid with MDS4.” e-Science and Grid Computing

2006. New York: IEEE, 2006:69-69.

[4] Neilsen E. H., “The Sloan Digital Sky Survey Data Archive Server.”

Computing in Science Engineering, 2008, 10(1):13-17.

[5] Bonfield J. K., Staden R., “ZTR: a new format for DNA sequence

trace data”. Bioinformatics, 2002, 18(1):3-10.

[6] Faraz Shaikh, Mikhil Chainani, “A case for small file packing in

parallel virtual file system (pvfs2),” In Advanced and Distributed

Operating Systems Fall 07, 2007.

[7] Carns P., Lang S., Ross R., Vilayannur M., et al. “Small-file access in

parallel file systems” International Parallel and Distributed

Processing Symposium, New York: IEEE Computer Society,

2009:1-11.

[8] Hendricks J., Sambasivan R. R., Sinnamohideen S.,et al. “Improving

small file performance in object-based storage.” [2006].

http://www.pdl.cmu.edu/PDL-FTP/Storage/CMU-PDL-06-104.pdf.

[9] Kuhn M., Kunkel J. M., Ludwig T., “Dynamic file system semantics

to enable metadata optimizations in PVF.” Concurrency and

Computation: Practice and Experience, 2009, 21(14): 1775–1788.

[10] Mackey G., Sehrish S., Jun W., “Improving metadata management

for small files in HDFS.” Cluster Computing and Workshops 2009.

New York: IEEE Computer Society, 2009:1-4.

[11] Ghemawat S., Gobioff H., Leung S., “The Google file system.”

Symposium on Operating Systems Principles 2003. New York:

ACM.2003:29-43.

[12] Amazon. “Amazon Simple Storage Service” [2011].

http://www.amazon.com/s3.

[13] Shvachko K., Hairong Kuang, Radia, S., Chansler R., "The Hadoop

Distributed File System," Mass Storage Systems and Technologies

(MSST), 2010 IEEE 26th Symposium on , vol., no., pp.1-10, 3-7

May 2010.

[14] Decandia G., Hastorun D., Jampani M., et al. “Dynamo: amazon's

highly available key-value store.” Special Interest Group on

Operating System 2007. New York: ACM. 2007. 41: 205-220.

[15] Li xiu-qiao, Dong bin, Xiao Li-min, et al. “Small Files Problem in

Parallel File System.” Network Computing and Information Security.

New York: IEEE Computer Society. 2011: 227-232.

[16] Karger D., Lehman E., Leighton T., et al. “Consistent hashing and

random trees: distributed caching protocols for relieving hot spots on

the World Wide Web.” Symposium on Theory of Computing 1997,

New York: ACM, 1997: 654-663.

[17] Stoica I., et al. “Chord: A scalable peer-to-peer lookup service for

internet applications.” in SIGCOMM '01. 2001. New York, NY,

USA: ACM.

[18] Maymounkov P., D. Mazières, Kademlia: “A Peer-to-Peer

Information System Based on the XOR Metric,” in Lecture Notes in

Computer Science, P. Druschel, F. Kaashoek and A. Rowstron, P.

Druschel, F. Kaashoek and A. Rowstron^Editors. 2002, Springer

Berlin/Heidelberg. p. 53-65.

[19] Shvachko, K., et al. “The Hadoop Distributed File System.” in Mass

Storage Systems and Technologies (MSST), 2010 IEEE 26th

Symposium on. 2010.

47

